
Minimizing Technical
Barriers to Learning
Programming

Martin Velez

Ph.D. Candidate

University of California, Davis

August 2018

About Me

B.A in
Economics

Software
Engineer

Ph.D. in
Computer

Science
Father

Software
Engineering

Programming
Languages

Computer
Science

Education

2

Lessons

Novelty

Impact Depth

Research Good Research

High in at least one
dimension.

Your Own Research

First, it must matter to
you.

Alternative: It inspires
you, good or bad.

3

Motivation

4

Software is an integral part of our lives.

5

Software Engineer Labor Market
Source: https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm

6

Software Engineer Scarcity
Source: https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-

today/fulltext

9

Rising Demand for
CS Education

UC Davis
• Class sizes tripled.
• ECS 30 (Introduction to

Programming) had 400
students.

UC Berkeley
• CS 61A (Structure and

Interpretation of
Computer Programs) had
1762 students.

MOOCs
• Millions of students

Source:
http://www.dailycal.org/2017/0
8/24/introductory-computer-
science-course-enrollment-
increases-last-year/

10

Issues

A lot students are failing.

• UC Davis, ECS 140A, 40 / 140

• Watson and Li, ITiCSE 2014,
33% failure rate.

A lot students are dropping out.

• Ireland, 2016, 33%.

At large scales, teaching quality is
affected negatively.

• Room capacity.

• Less interaction with professor
and TAs.

• Less personalized instruction.

11

Programming is
difficult.
“The art of programming is the art of
organizing complexity, of mastering multitude
and avoiding its bastard chaos as effectively
as possible.”

“Programming is one of the most difficult
branches of applied mathematics; the poorer
mathematicians had better remain pure
mathematicians.”

12

Programmer
Experience
• Let’s not think in binary.

• People can be on experience
spectrum.

• Experience helps.

Learner

Junior

Senior

13

How can we help people who are
learning to program?

Learners + Junior Programmers >> Senior Programmers

14

Technical Barriers to
Learning Programming

Def. Technical challenges that all programmers face
but to learners and junior programmers:
• are much more difficult to resolve,
• can cause excessive frustration,
• can cause excessive wasted time and effort,
• and may even cause learners to quit.

Since there are more learners and junior
programmers than there are senior
programmers, this may have significantly more
impact.

15

This Talk

Language
Syntax

Lexical Distinguishability

Development
Tools

Kodethon

Compiler
Error

Messages

CompAssist

16

Kodethon: University
Student Adoption and
Perceptions of a web
IDE

Collaborators:
Michael Yen,
Mathew Le,

Zhendong Su,
Amin Alipour.

To be submitted to
SIGCSE 2019

17

Motivation

• Programming consists of
many steps: coding, testing,
debugging, compiling, and
linking.

• Each step requires proper
installation and
configuration of tools and
environment.

• This can be time-consuming
and error-prone for both
students and teachers.

• Web IDEs provide a uniform,
ready-to-use programming
platform.

18

Challenges

No existing suitable web
IDE.

• Cloud9: Too much like
desktop IDEs.

• Runnable.com:
Defunct.

• Koding.com: Privoted
and abandoned IDE.

Basic requirements:

• Support all current PLs.
• Scales to hundreds,

thousands of students.
• High availability

especially on
homework due dates.

• Low latency.

19

User Interface

20

Architecture

Technologies
• AngularJS
• Ruby-on-Rails
• Docker
• PostgreSQL

• Firebase
• Google API
• And more...

21

File System Node
A

Node
B

Node
c

Node
D

Node
E

• Circular replication to k
nodes.

• Your files are stored on node
C.

• They are also replicated on
the next k nodes: D, E, ….

• In our implementation k = 1.

22

Program
Execution
• Student programs are

compiled and executed on
their assigned cluster node.

• When a user runs a program,
a Docker container is started.

• Benefits:
• Security
• Resource limits like RAM,

CPU, and disk space.

• Program output is redirected
to a Linux pipe.

23

Feature Highlights

24

• Private and publicProjects

• Pair-programmingReal-time
collaboration

• Power-usersUnix Terminal.

• Automatic grading of programming systemsLearning
Management System

Deployment

2
5

Development Started
in Summer 2014

1
First trial in Spring
2015
• ECS 10 – Introduction to

Programming (in Python)

2
Since then, at least
10 live
demonstrations.
• 5 – 15 minutes

3

Adoption

• Over 3000 students
have signed up.

• We gave live demos
in 6 courses but
Kodethon is used in
at least 15 different
undergrad courses.

• Over 15.1M LOC.
• 4.5M in C++
• 2.5M in C

26

Survey

40 closed and open-ended questions.

•Usability, usefulness, ease-of-use, ease-of-
learning, and satisfaction.

USE questionnaire (Lund 2001)

•Class forum of 2 ongoing courses (ECS 10 and
ECS 30)

•Email students from previous quarte (ECS 140A)
•Received 140 responses

Recruitment

•Male 87, Female 51
•Asian 90, White 35, Other 17
•Freshman 39, Sophomore 40, Junior 38, Senior

23

Demographics:

Usage Insights

28

Perceptions (Usefulness)
1082 responses, 32% Positive, 30% Neutral, 38% Negative

29

Perceptions
(Features)

30

Adoption Factors

31

Summary
and Future
Work

• Partial adoption is good.
• Instructors should introduce students

to web IDEs.
• About a third of students found it

"useful”.
• About half used it "very often" or

"often".
• Implicit Learning Objectives

• "I want them to learn how to set
up a development environment.”

• “I want them to use git.”
• What is “real” programming?

• Students perceive web IDEs as
not “real” tools.

• Computational thinking vs
System building.

• Intelligent Coding
• Leverage IDE usage to provide relevant

information automatically.

32

This Talk

Language
Syntax

Lexical Distinguishability

Development
Tools

Kodethon

Compiler
Error

Messages

CompAssist

33

CompAssist:
Synthesizing Minimal
Compilation Repair
Examples

Collaborators:
Chengnian Sun

(Google),

Nima Joharizadeh,
Haichuan Wang

(Huawei),
Zhendong Su.

To be submitted to
ICSE 2019.

34

Motivation

•Compiler errors are difficult to
understand.

All programmers,
learners to senior,
make compilation

errors.

•37M compilations, 17M failuresSIGCSE 2015

•C++ developers build 10 times/day and
37% fail.

•Java developers build 7 times/day and
30% fail.

Google Study 2014

Example

36

Can’t we just write
better error messages?

• Previous example from recent version of clang.

• In 2008, GCC replaced entire parser.

Compiler Error Message
Augmentation

HelpMeOut (CHI 2010)

• An “IDE” plugin that shows
example fixes.

• Collect example fixes using
crowdsourcing.

Limitations

• Privacy

• The Bootstrap Problem

• Extensibility

• Bias/Completeness

• Inferring Patches

Compilation Repair
Example

For a specific compiler, (u, c) is a compilation repair
example for error message e, if u is an uncompilable
program that triggers e, and c is a compilable program.
The difference between u and c is a repair patch (diff) ∆.

Uncompilable Program Compilable Program

Challenges

40

Compilation
repair

examples can
help

programmers
resolve
errors.

How do you
obtain

compilation
repair

examples?

How do you
present
them?

Key Insight

41

If we do this over many different compilable
programs with random mutations, we can

get many repair examples and high coverage
of the compiler error space.

It is much easier to break programs than to
repair them.

Other Strategies

Collect uncompilable
programs, and repair

them.

Data Mining: sk_p,
Prophet, DeepFix,
Genesis, TRACER.

Crowd-sourcing:
HelpMeOut, NoFAQ.

Fuzz

We perform single-operation, single-token mutations.

• Tokenize source code

• Mutate
• Delete a random token.
• Select a random token. Insert it a random position.

Reduce

43

Post Condition: u4 triggers same error as u0.

Fuzz-and-Reduce

44

Search Engine
Given a user program that fails to
compile.

1. Extract error message.

2. Get related examples.

3. Group examples by patch.

4. Auto-experiment on user
program with patches.

5. Return ranked patches with
successful patches first.

45

Evaluation

46

RQ1: What proportion of
compiler errors are covered
by the repair examples?

RQ2: Do we generate a
diverse collection of repair
examples for each compiler
error?

RQ3: Are the generated
compiler repair examples
simple?

Experimental
Setup

•clang++-3.9.

A mainstream C++ compiler

•GNU GCC test suite.
•25,240 compilable programs for C and C++

Compilable Programs

•10 days
•Exit on first fatal error

Fuzz-and-Reduce

•4, 092 distinct diagnostic messages, including
errors, warnings, notes, remarks, and other type
of messages.

•1, 686 kinds of error that could potentially be
triggered by compiling C and C++ programs.

clang’s source code.

RQ1: What proportion of compiler errors are covered
by the repair examples?

Error Message Coverage (Breadth)

48

RQ2: Do we generate a diverse collection of repair
examples for each compiler error?

Error Message Coverage (Depth)

49

Generated at least 2 different repair examples for 89.6% of errors. Also, for 79.8%
of errors, it generated at least 2 distinct patches.

RQ3: Are the generated compiler repair examples
simple?

59.6% have 5 or fewer LOC, 60.8% have 25 or fewer tokens

50

LOC Tokens

User Study

• Do programmers find the generated
compilation repair examples helpful in
resolving compiler errors of real-world
C++ programs?

• 9 Tasks (real-world C++ uncompilable
programs).

• 14 participants
• Find and fix the code defect. Submit

solution.
• Rate helpfulness of repair examples.

Example Task

52

User Study Results

53

HelpfulNot Helpful

Participant
Feedback

54

Repair examples illustrated patches that resolved
the compiler error.

• P12: “the ones they got right they were
perfectly good”

Repair examples helped with unfamiliar C++
concepts.

• P1: “Suggested patches was helpful for
error messages to concepts that I am
unfamiliar with.”

• P8: “The suggested patches and examples
were a good refresher and helped save me
a lot of time.”

Repair examples suggested possible actions.
• P2: “some possible moves you can make

from the current state of the program.”
• P11: “repair examples told me exactly what

to do to fix the compiler error even though
I had no idea what was going on.”

Summary
and Future
Work

• Novel technique for synthesizing
compilation repair examples.
• Offline Generation + Online

Search
• Generalizability: We can adapt this

technique for different compilers,
e.g., javac.

• Coverage:
• Continuous fuzz-and-reduce.
• Additional seeds.
• Unreachable code?

• Apply top-ranked patched
automatically to user program.

• Integrate CompAssist into Kodethon,
amd IDEs like Visual Studio.

• Adapt compiler error messages to
user proficiency.

55

Thank you!

Language
Syntax

Lexical Distinguishability

Development
Tools

Kodethon

Compiler
Error

Messages

CompAssist

56

This Talk

Language
Syntax

Lexical Distinguishability

Development
Tools

Kodethon

Compiler
Error

Messages

CompAssist

57

On the Lexical
Distinguishability of
Source Code

Collaborators:
Dong Qiu (Huawei),

You Zhou
(Facebook),

Earl Barr (UCL),
Zhendong Su (UC

Davis).

Gold Medal at ACM
Student Research

Competition @
OOPSLA 2014.

58

Motivation • In a natural language
sentence, some words
are more important to
its meaning than
others.
• “My backpack is

very heavy.”
• “There is a lot of

smoke outside.”

• From a few distinctive
words, we can often
guess the meaning of
the original sentence.
• I enjoy rainy days.

• They enjoy the
rainy season.

• Sloppy Programming

• Little et al., ASE,
2007

• Write a few key
words, “list add”.

• Synthesize rest of
code.

• SmartSynth

• Le et al., MobiSys,
2013.

• Keywords to
TouchDevelop
Scripts.

• Code Search

• “What should I type
to find the code I
want?”

59

The Wheat
and Chaff
Hypothesis

Source code consists of
wheat and chaff. It
contains a lot of chaff.

Challenge: Can we
separate the wheat from
the chaff in programming
language sentences?

Vision: Programmer
writes wheat. Computer
fills in chaff.

60

Problem
Formulation

• In source code:
• What is wheat?
• What is chaff?
• How do we separate them?

61

Bag-of-Words Model

•Functions are natural, likely distinct, pieces of code and functionality.

Unit of Code

•A function is a set/multiset of words.

Bag-of-Words

•”hello” -> STRINGLITERAL
•3.14 -> float

A word is a lexeme or some abstraction.

•A lexicon is a set of words.
•Varying the lexicon allows us to explore programming language-specific information.

Lexicon

62

Example

63

Distinguishable Code

A unit of code is lexically distinguishable if it has a distinguishing
subset

Given a set !, and a finite collection of finite sets "#$$, !∗ is a
distinguishing subset of !, if and only if:

S∗ ⊆ ! ∀" ∈ "#$$, !∗ ⊈ "

64

The MINSET Problem

• Given a finite set S, and a finite collection of finite sets Coll, find a minimum
distinguishing subset (minset) S* of S.

• Plain English: We want to find the smallest distinguishing subset of a function.

• Example:
• Let S1 = {a,b,c,e}, S2 = {a,c}, S3 = {b,c,d}, S4 = {a,d,e}.
• MINSET(S1, {S2, S3, S4}) = {a,b}.
• MINSET(S2, {S1, S3, S4}) = ∅
• MINSET(S3, {S1, S2, S4}) = {b,c}

65

Computational Complexity

• Theorem:
• MINSET is NP-hard.

• Proof Sketch:
• Reduce HITTING-SET to MINSET.

66

The Minset Algorithm

67

Research Questions

RQ1

• How many units
of code are
lexically
distinguishable?

RQ2

• How much of
code is needed
to distinguish?

RQ3

• What is a
natural, minimal
lexicon?

68

Empirical Setup

• A popular programming language,
Java.

• Most popular projects in open-source
repositories.

• Large Corpus (100M LOC)
• Large Universe of Methods (1.9M)

69

Lexicons

70

RQ1: How many units of code are lexically
distinguishable?

Over LEX, 91% are distinguishable. LTT is too coarse.

71

RQ2: How much of code is needed to distinguish?
Over LEX, 96% is chaff. Mean Minset size is 1.56 words.

72

RQ3: What is a natural,
minimal lexicon?

• MIN4 is good in that
• methods are still

distinguishable (44.79%),
and

• minsets are still small
(3.06%).

• With multiplicity and no
abnormally large methods,
61.74% distinguishability.

73

Summary and Future Work

A MINSET is our
proposal of a

formal definition
of key ideas
(“wheat”).

Investigate to
natural language

corpora.

Experiment over
other

programming
languages.

Experiment over
web documents

retrieved by
Google.

74

