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Lessons

Novelty

Impact Depth

Research Good Research

High in at least one 
dimension.

Your Own Research

First, it must matter to 
you.

Alternative: It inspires 
you, good or bad.

3



Motivation
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Software is an integral part of our lives.
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Software Engineer Labor Market
Source: https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm

6



Software Engineer Scarcity
Source: https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-

today/fulltext
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Rising Demand for 
CS Education

UC Davis
• Class sizes tripled.
• ECS 30 (Introduction to 

Programming) had 400
students.

UC Berkeley
• CS 61A (Structure and 

Interpretation of 
Computer Programs) had 
1762 students.

MOOCs
• Millions of students

Source: 
http://www.dailycal.org/2017/0
8/24/introductory-computer-
science-course-enrollment-
increases-last-year/
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Issues

A lot students are failing.

• UC Davis, ECS 140A, 40 / 140

• Watson and Li, ITiCSE 2014, 
33% failure rate.

A lot students are dropping out.

• Ireland, 2016, 33%. 

At large scales, teaching quality is 
affected negatively.

• Room capacity. 

• Less interaction with professor 
and TAs.

• Less personalized instruction.
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Programming is 
difficult.
“The art of programming is the art of 
organizing complexity, of mastering multitude 
and avoiding its bastard chaos as effectively 
as possible.”

“Programming is one of the most difficult 
branches of applied mathematics; the poorer 
mathematicians had better remain pure 
mathematicians.”
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Programmer 
Experience
• Let’s not think in binary.

• People can be on experience 
spectrum.

• Experience helps.

Learner

Junior

Senior
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How can we help people who are 
learning to program?

Learners + Junior Programmers >> Senior Programmers
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Technical Barriers to 
Learning Programming

Def. Technical challenges that all programmers face 
but to learners and junior programmers: 
• are much more difficult to resolve, 
• can cause excessive frustration,
• can  cause excessive wasted time and effort,
• and may even cause learners to quit.

Since there are more learners and junior 
programmers than there are senior 
programmers, this may have significantly more 
impact.
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Kodethon: University 
Student Adoption and 
Perceptions of a web 
IDE

Collaborators: 
Michael Yen, 
Mathew Le, 

Zhendong Su, 
Amin Alipour.

To be submitted to 
SIGCSE 2019
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Motivation

• Programming consists of 
many steps: coding, testing, 
debugging, compiling, and 
linking.

• Each step requires proper 
installation and 
configuration of tools and 
environment.

• This can be time-consuming 
and error-prone for both 
students and teachers.

• Web IDEs provide a uniform, 
ready-to-use programming 
platform.

18



Challenges

No existing suitable web 
IDE.

• Cloud9: Too much like 
desktop IDEs.

• Runnable.com: 
Defunct.

• Koding.com: Privoted 
and abandoned IDE.

Basic requirements:

• Support all current PLs.
• Scales to hundreds, 

thousands of students.
• High availability 

especially on 
homework due dates.

• Low latency.
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User Interface
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Architecture

Technologies
• AngularJS
• Ruby-on-Rails
• Docker
• PostgreSQL

• Firebase
• Google API
• And more...
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File System Node 
A

Node 
B

Node 
c

Node 
D

Node 
E

• Circular replication to k 
nodes.

• Your files are stored on node 
C.

• They are also replicated on 
the next k nodes: D, E, ….

• In our implementation k = 1.
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Program 
Execution
• Student programs are 

compiled and executed on 
their assigned cluster node.

• When a user runs a program, 
a Docker container is started.

• Benefits:
• Security
• Resource limits like RAM, 

CPU, and disk space.

• Program output is redirected 
to a Linux pipe.
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Feature Highlights

24

• Private and publicProjects

• Pair-programmingReal-time 
collaboration

• Power-usersUnix Terminal.

• Automatic grading of programming systemsLearning 
Management System



Deployment

2
5

Development Started 
in Summer 2014

1
First trial in Spring 
2015
• ECS 10 – Introduction to 

Programming (in Python)

2
Since then, at least 
10 live 
demonstrations.
• 5 – 15 minutes
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Adoption

• Over 3000 students 
have signed up.

• We gave live demos 
in 6 courses but 
Kodethon is used in 
at least 15 different 
undergrad courses.

• Over 15.1M LOC.
• 4.5M in C++
• 2.5M in C
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Survey

40 closed and open-ended questions.

•Usability, usefulness, ease-of-use, ease-of-
learning, and satisfaction.

USE questionnaire (Lund 2001)

•Class forum of 2 ongoing courses (ECS 10 and 
ECS 30)

•Email students from previous quarte (ECS 140A)
•Received 140 responses

Recruitment

•Male 87, Female 51
•Asian 90, White 35, Other 17
•Freshman 39, Sophomore 40, Junior 38, Senior 
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Demographics:



Usage Insights
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Perceptions (Usefulness)
1082 responses, 32% Positive, 30% Neutral, 38% Negative
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Perceptions 
(Features)
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Adoption Factors
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Summary 
and Future 
Work

• Partial adoption is good.
• Instructors should introduce students 

to web IDEs.
• About a third of students found it 

"useful”.
• About half used it "very often" or 

"often".
• Implicit Learning Objectives

• "I want them to learn how to set 
up a development environment.”

• “I want them to use git.”
• What is “real” programming?

• Students perceive web IDEs as 
not “real” tools.

• Computational thinking vs 
System building.

• Intelligent Coding
• Leverage IDE usage to provide relevant 

information automatically.
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CompAssist: 
Synthesizing Minimal 
Compilation Repair 
Examples

Collaborators: 
Chengnian Sun 

(Google), 

Nima Joharizadeh, 
Haichuan Wang 

(Huawei), 
Zhendong Su.

To be submitted to 
ICSE 2019.
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Motivation

•Compiler errors are difficult to 
understand.

All programmers, 
learners to senior, 
make compilation 

errors.

•37M compilations, 17M failuresSIGCSE 2015

•C++ developers build 10 times/day and 
37% fail.  

•Java developers build 7 times/day and 
30% fail.

Google Study 2014



Example
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Can’t we just write 
better error messages?

• Previous example from recent version of clang.

• In 2008, GCC replaced entire parser.



Compiler Error Message 
Augmentation

HelpMeOut (CHI 2010)

• An “IDE” plugin that shows 
example fixes.

• Collect example fixes using 
crowdsourcing.

Limitations

• Privacy

• The Bootstrap Problem

• Extensibility

• Bias/Completeness

• Inferring Patches



Compilation Repair 
Example

For a specific compiler, (u, c) is a compilation repair 
example for error message e, if u is an uncompilable 
program that triggers e, and c is a compilable program. 
The difference between u and c is a repair patch (diff) ∆.

Uncompilable Program Compilable Program



Challenges
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Compilation 
repair 

examples can 
help 

programmers 
resolve 
errors.

How do you 
obtain 

compilation 
repair 

examples?

How do you 
present 
them?



Key Insight
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If we do this over many different compilable
programs with random mutations, we can 

get many repair examples and high coverage 
of the compiler error space.

It is much easier to break programs than to 
repair them.

Other Strategies

Collect uncompilable 
programs, and repair 

them.

Data Mining: sk_p, 
Prophet, DeepFix, 
Genesis, TRACER.

Crowd-sourcing: 
HelpMeOut, NoFAQ.



Fuzz

We perform single-operation, single-token mutations.

• Tokenize source code

• Mutate 
• Delete a random token.
• Select a random token. Insert it a random position.



Reduce
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Post Condition: u4 triggers same error as u0.



Fuzz-and-Reduce
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Search Engine
Given a user program that fails to 
compile.

1. Extract error message.

2. Get related examples.

3. Group examples by patch.

4. Auto-experiment on user 
program with patches.

5. Return ranked patches with 
successful patches first.
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Evaluation

46

RQ1: What proportion of 
compiler errors are covered 
by the repair examples?

RQ2: Do we generate a 
diverse collection of repair 
examples for each compiler 
error?

RQ3: Are the generated 
compiler repair examples 
simple?



Experimental 
Setup

•clang++-3.9.

A mainstream C++ compiler

•GNU GCC test suite.
•25,240 compilable programs for C and C++

Compilable Programs

•10 days
•Exit on first fatal error

Fuzz-and-Reduce

•4, 092 distinct diagnostic messages, including 
errors, warnings, notes, remarks, and other type 
of messages.

•1, 686 kinds of error that could potentially be 
triggered by compiling C and C++ programs.

clang’s source code.



RQ1: What proportion of compiler errors are covered 
by the repair examples?

Error Message Coverage (Breadth)
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RQ2: Do we generate a diverse collection of repair 
examples for each compiler error?

Error Message Coverage (Depth)
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Generated at least 2 different repair examples for 89.6% of errors. Also, for 79.8% 
of errors, it generated at least 2 distinct patches.



RQ3: Are the generated compiler repair examples 
simple?

59.6% have 5 or fewer LOC, 60.8% have 25 or fewer tokens

50

LOC Tokens



User Study

• Do programmers find the generated 
compilation repair examples helpful in 
resolving compiler errors of real-world 
C++ programs?

• 9 Tasks (real-world C++ uncompilable 
programs).

• 14 participants
• Find and fix the code defect. Submit 

solution.
• Rate helpfulness of repair examples.



Example Task
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User Study Results
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HelpfulNot Helpful



Participant 
Feedback

54

Repair examples illustrated patches that resolved 
the compiler error. 

• P12: “the ones they got right they were 
perfectly good”

Repair examples helped with unfamiliar C++ 
concepts. 

• P1: “Suggested patches was helpful for 
error messages to concepts that I am 
unfamiliar with.”

• P8: “The suggested patches and examples 
were a good refresher and helped save me 
a lot of time.”

Repair examples suggested possible actions. 
• P2: “some possible moves you can make 

from the current state of the program.” 
• P11: “repair examples told me exactly what 

to do to fix the compiler error even though 
I had no idea what was going on.”



Summary 
and Future 
Work

• Novel technique for synthesizing 
compilation repair examples. 
• Offline Generation + Online 

Search
• Generalizability: We can adapt this 

technique for different compilers, 
e.g., javac.

• Coverage: 
• Continuous fuzz-and-reduce.
• Additional seeds.
• Unreachable code?

• Apply top-ranked patched 
automatically to user program.

• Integrate CompAssist into Kodethon, 
amd IDEs like Visual Studio.

• Adapt compiler error messages to 
user proficiency.
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Thank you!

Language 
Syntax

Lexical Distinguishability
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Tools

Kodethon

Compiler 
Error 

Messages

CompAssist
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On the Lexical 
Distinguishability of 
Source Code

Collaborators: 
Dong Qiu (Huawei), 

You Zhou 
(Facebook), 

Earl Barr (UCL), 
Zhendong Su (UC 

Davis).

Gold Medal at ACM 
Student Research 

Competition @ 
OOPSLA 2014.
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Motivation • In a natural language 
sentence, some words
are more important to 
its meaning than 
others. 
• “My backpack is 

very heavy.”
• “There is a lot of 

smoke outside.”

• From a few distinctive
words, we can often 
guess the meaning of 
the original sentence.
• I enjoy rainy days.

• They enjoy the 
rainy season.

• Sloppy Programming

• Little et al., ASE, 
2007

• Write a few key 
words, “list add”.

• Synthesize rest of 
code.

• SmartSynth

• Le et al., MobiSys, 
2013.

• Keywords to 
TouchDevelop 
Scripts.

• Code Search

• “What should I type 
to find the code I 
want?” 
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The Wheat 
and Chaff 
Hypothesis

Source code consists of 
wheat and chaff.  It 
contains a lot of chaff.

Challenge: Can we 
separate the wheat from 
the chaff in programming 
language sentences?

Vision: Programmer 
writes wheat.  Computer 
fills in chaff.
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Problem 
Formulation

• In source code:
• What is wheat?
• What is chaff?
• How do we separate them?
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Bag-of-Words Model

•Functions are natural, likely distinct, pieces of code and functionality. 

Unit of Code

•A function is a set/multiset of words.

Bag-of-Words

•”hello” -> STRINGLITERAL
•3.14 -> float

A word is a lexeme or some abstraction.

•A lexicon is a set of words.
•Varying the lexicon allows us to explore programming language-specific information.

Lexicon
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Example
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Distinguishable Code

A unit of code is lexically distinguishable if it has a distinguishing 
subset

Given a set !, and a finite collection of finite sets "#$$, !∗ is a 
distinguishing subset of !, if and only if:

S∗ ⊆ ! ∀" ∈ "#$$, !∗ ⊈ "
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The MINSET Problem

• Given a finite set S, and a finite collection of finite sets Coll, find a minimum 
distinguishing subset (minset) S* of S.

• Plain English: We want to find the smallest distinguishing subset of a function.

• Example:
• Let S1 = {a,b,c,e}, S2 = {a,c}, S3 = {b,c,d}, S4 = {a,d,e}.
• MINSET(S1, {S2, S3, S4}) = {a,b}.
• MINSET(S2, {S1, S3, S4}) = ∅
• MINSET(S3, {S1, S2, S4}) = {b,c}
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Computational Complexity

• Theorem: 
• MINSET is NP-hard.

• Proof Sketch:
• Reduce HITTING-SET to MINSET.
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The Minset Algorithm
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Research Questions

RQ1

• How many units 
of code are 
lexically 
distinguishable?

RQ2

• How much of 
code is needed 
to distinguish?

RQ3

• What is a 
natural, minimal 
lexicon?
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Empirical Setup

• A popular programming language, 
Java.

• Most popular projects in open-source 
repositories.

• Large Corpus (100M LOC)
• Large Universe of Methods (1.9M)
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Lexicons
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RQ1: How many units of code are lexically 
distinguishable?

Over LEX, 91% are distinguishable.  LTT is too coarse.
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RQ2: How much of code is needed to distinguish?
Over LEX, 96% is chaff.  Mean Minset size is 1.56 words.
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RQ3: What is a natural, 
minimal lexicon?

• MIN4 is good in that 
• methods are still 

distinguishable (44.79%), 
and 

• minsets are still small 
(3.06%).

• With multiplicity and no 
abnormally large methods, 
61.74% distinguishability.
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Summary and Future Work

A MINSET is our 
proposal of a 

formal definition 
of key ideas 
(“wheat”).

Investigate to 
natural language 

corpora.

Experiment over 
other 

programming 
languages.

Experiment over 
web documents 

retrieved by 
Google.
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