Minimizing Technical
Barriers to Learning
Programming

About Me

Pri

/\/Equilibrium

P¥l---ccceaaaaaa

Software
Engineer

B.Ain
Economics

Step S C Choose S*

GE
v EEE | EED ¢

(aJ[e][e)
Gl) [e=]
1 (a]le[e] { o [[a] (] >
mtoooiics
ELIC L

PhD in

Computer Father

Science

Software
Engineering

Computer
Science
Education

Programming
Languages

Lessons

Good Research Your Own Research

o
- _

Novelty

Motivation

st [

Software is an integral part of our lives.

Quick Facts: Software Developers

$103,560 per year

2017 Median Pay & £49.79 per hour

Typical Entry-Level Education 0 Bachelor's degree
Work Experience in a Related Occupation 0 None

On-the-job Training 0 None

Number of Jobs, 2016 & 1,256,200

Job Outlook, 2016-26 9 24% (Much faster
Employment Change, 2016-26 0 302,500

Software Engineer Labor Market

Annual Total U.S. STEM Jobs Thru 2022 vs. Recent College Grads

O Total Job Openings @ Bachelors Degrees Awarded

140,000

120,000 Jobs

Grads
100,000 -

80,000

Grads
60,000

Jobs

40,000
Grads

20,000

Grads
Jobs Jobs ,W

Computing Engineering Physical Sciences Life Sciences Mathematics

Grads

Data Sources: US-BLS Employment Projections, 2012-2022 (www.bls.gov/emp/ep_table_102.htm)
National Science Foundation NCSES (www.nsf.gov/statistics/nsf13327/pdf/tab26.pdf, tab33.pdf, tab34.pdf, tab35.pdf, tab46.pdf)

Software Engineer Scarcity

Source: https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-
today/fulltext

Rising Demand for
CS Education

UC Davis
* Class sizes tripled.

* ECS 30 (Introduction to
Programming) had 400
students.

UC Berkeley

* CS61A (Structure and
Interpretation of
Computer Programs) had
1762 students.

MOOCs
* Millions of students

Source:
http://www.dailycal.org/2017/0
8/24/introductory-computer-
science-course-enrollment-
increases-last-year/

Issues

A lot students are failing.
* UC Davis, ECS 140A, 40/ 140

* Watson and Li, ITiCSE 2014,
33% failure rate.

A lot students are dropping out.
* Ireland, 2016, 33%.

At large scales, teaching quality is
affected negatively.

* Room capacity.

* Less interaction with professor
and TAs.

* Less personalized instruction.

Programming Is
difficult.

“The art of programming is the art of
organizing complexity, of mastering multitude
and avoiding its bastard chaos as effectively
as possible.”

“Programming is one of the most difficult
branches of applied mathematics; the poorer
mathematicians had better remain pure
mathematicians.”

12

Programmer
Experience

Let’s not think in binary.

People can be on experience
spectrum.

Experience helps.

Learner

Junior

Senior

13

How can we help people who are
learning to program?

Learners + Junior Programmers >> Senior Programmers

Technical Barriers to
Learning Programming

Def. Technical challenges that all programmers face
but to learners and junior programmers:

e are much more difficult to resolve,

* can cause excessive frustration,

e can cause excessive wasted time and effort,
* and may even cause learners to quit.

Since there are more learners and junior
programmers than there are senior
programmers, this may have significantly more
impact.

15

This Talk

Lexical Distinguishability

(alle]
0 (a[e]le]y {(e][<][da] ! :
(a]la][e]

(][]
EannRInn ‘i‘:‘ :
 lmEe =
2 (3] !) {(\EEE} % ‘M!’
3 (E){ } MInse!M_.)

Language
Syntax

Kodethon

Kodethon

- cote x

#include<stdio.h>

- int main

int lower, upper, step;
Tower = -200;

upper = 10;

step = 20;

pr ncf(Q\tFn");
--\n"

Celeius - celsive « ¢

printf("finished!\n")

return 0;

Development
Tools

O {
float fahrenheit, celsius

CompAssist

Compiler Output

Compiler
Error
Messages

16

Collaborators:
Michael Yen,
Mathew Le,

Zhendong Su,

Amin Alipour.

To be submitted to
SIGCSE 2019

Kodethon: University
Student Adoption and

Perceptions of a web
DE

® " o
{+

Motivation

=
A

o’

ﬁ

Programming consists of
many steps: coding, testing,
debugging, compiling, and
linking.

Each step requires proper
installation and
configuration of tools and
environment.

This can be time-consuming
and error-prone for both
students and teachers.

Web IDEs provide a uniform,
ready-to-use programming
platform.

Challenges

No existing suitable web : :
DE Basic requirements:

e Cloud9: Too much like
desktop IDEs.

e Runnable.com:
Defunct.

e Koding.com: Privoted
and abandoned IDE.

e Support all current PLs.

e Scales to hundreds,
thousands of students.

e High availability
especially on
homework due dates.

e Low latency.

19

Kodethon

My Files

n

|

[|

n

[|

[|

n

|

[|

[|

n

ada

bash

courses

cpp

Demo

demos

ECS10

ECS 50

github

Homework 3

html

User Interface

c2f.c %

1 #include<stdio.h>
2

3

4-int mainQ {

5 float fahrenheit, celsius;
6 int lower, upper, step;

7 lower = -200;

8 upper = 10;

9 step = 20;

10

11 printf(" C\tF\n");

12 printf("------------ \n");
13

14 celsius = lower;

15~ while (celsius <= upper) {
16 fahrenheit = (9.0 / 5.0) * celsius + 32.0;
<

Using python 3.6.3 | /'

[kodethon]#
C F
-200 -328.0
-180 -292.0
-160 -256.0
-140 -220.0
-120 -184.0
-100 -148.0
-80 -112.0
-60 -76.0
-40 -40.0
-20 -4.0
0 32.0

~ Martin Velez (mvelez999)

All Changes Saved

Termina

®

Node Servers

Architecture

Technologies

e AngularlS

* Ruby-on-Rails
* Docker

* PostgreSQL
* Firebase

* Google API

* And more...

F|Ie System

Circular replication to k
nodes.

Your files are stored on node
C.

* They are also replicated on
the next k nodes: D, E,

In our implementation k = 1.

Program
Execution

Containers
e Student programs are
compiled and executed on —> Appl App2 App3 App3 App3
their assigned cluster node. bins and tbraries
where possible to
) : improve efficiency.
* When a userruns a program, Containers are Lins/ Lipns/ Bins /Libraries
. . created with Linux, lelEhles otz
a Docker container is started. but share a kernel
with almost any
type of host OS.
d Benefits: Docker Engine
* Security

* Resource limits like RAM, Host Operating System
CPU, and disk space.

Server

* Program output is redirected
to a Linux pipe.

C JAVA C++ PYTHON JAVASCRIPT RUST GOLANG

23

Feature Highlights

Projects * Private and public

Real-time

: e Pair-programmin
collaboration Prog g

Unix Terminal. e Power-users

Learning
Management System

e Automatic grading of programming systems

24

Deployment

Development Started
in Summer 2014

First trial in Spring
2015

* ECS 10 — Introduction to
Programming (in Python)

Since then, at least
10 live
demonstrations.

¢ 5—15 minutes

Adoption

* Over 3000 students
have signed up.

* We gave live demos
in 6 courses but
Kodethon is used in
at least 15 different
undergrad courses.

e QOver 15.1M LOC.
e 45Min C++
e 25MinC

Title

Programming Language(s) | Live Demo | Survey | Student Use

Introduction to Programming Python v v
Introduction to Programming C v v
Software Development and Object-Oriented Programming C++, Rust v v v
Computer Organization and Machine-Dependent Programming | Assembly, C++ v v v
Data Structures and Programming C, C++ 4 v
Theory of Computation N/A v
Algorithm Design & Analysis C, C++ v
Probability and Statistical Modeling for Computer Science Python, R v
Programming Languages Java, Lisp, Prolog v v v
Scripting Languages and Their Applications Python, R v
Parallel Architecture C v
Software Engineering XXX v
Web Programming HTML, CSS, Javascript v
Introduction to Artificial Intelligence XXX v
Computer Graphics XXX v
Lines of Code by Programming Language
CH++ e 4 S5 M
Javascript ———) 2 M
Java e— 1 4M
C/C++ Header wssss———— 12M
Assembly m— 743K
Python wesssssss 616K
HTML wssssssm 535K
Perl/Prolog wesssm 454K
CSS mmmm 350K
Lisp 1 11K
om M 2M 3M 4aM 5M

26

40 closed and open-ended questions.

USE questionnaire (Lund 2001)

e Usability, usefulness, ease-of-use, ease-of-
learning, and satisfaction.

Recruitment

e Class forum of 2 ongoing courses (ECS 10 and
ECS 30)

e Email students from previous quarte (ECS 140A)
* Received 140 responses

Demographics:

* Male 87, Female 51
¢ Asian 90, White 35, Other 17

* Freshman 39, Sophomore 40, Junior 38, Senior
23

Submit Assignments 84%
Test programs
Write programs

Collaborate

13%

Share programs

Other

0.0% 45.0% 90.0%

(a) “I use OURIDE..” Note: No one (b) “I use OURIDE to..”
responded “Never”.

Personal Laptop
Personal Desktop

95%

Windows

46%
Campus Desktops

Phone
Tablet
Other Machines

0% 25% 50% 75% 100%

(c) “Iuse OURIDE on the following (d) “I use OURIDE primarily in..”
devices..” Note: No one selected “i0S”, “An-
droid”, or “Other”.

Usage Insights

28

Neither agree Strongly

Item Strongly agree Agree nor disagree Disagree disagree Total
It helps me be more effective. 5% 7 27% 36 33% 44 20% 27 15% 20 134
It helps me be more productive. 5% 7 23% 31 30% 40 26% 35 16% 22 135
It is useful. 5% 7 50% 68 27% 37 8% 11 10% 13 136
It gives me more control over 5% 7 16% 20 38% 49 22% 28 19% 25 129
the activities in my life.

It makes the things | want to 4% 6 21% 28 32% 43 26% 35 17% 23 135
accomplish easier to get done.

It saves me time when | use it. 4% 6 24% 33 25% 34 29% 40 18% 25 138
It meets my needs. 4% 6 33% 45 32% 43 18% 25 13% 17 136
It does everything | would 6% 8 24% 33 25% 35 29% 40 17% 23 139
expect it to do.

Total 5% 54 27% 294 30% 325 22% 241 16% 168 1082

Perceptions (Usefulness

1082 responses, 32% Positive, 30% Neutral, 38% Negative

29

Perceptions

Features

Top-10 Most Useful Features

Web-based

No Installation Required

Assignment Grading

Works on Multiple Devices

Unix Terminal

Assignment Feedback

Real-time Collaboration
Multi-Programming Language Support
File Cloud Storage

Syntax Highlighting Code Editor

I 64%
I ——— 61%

—— 52 %

———— 37%
I 35%
I 34%
I 33%
I 25%
I 23%
I 23%

0% 10% 20% 30% 40% 50% 60% 70%

Figure 7: “What features of OURIDE do you find most useful?”

Top-10 Positive Aspects

Real-time Collaboration & Chat
Assignment Grading & Feedback

Easy to Use

Web-based

Cloud File Storage

Other

Unix Terminal & CDE Shell
Multi-Programming Language Support
Smart Run Button

No Installation Required

|
—— 1A%
I 7%

I 7%

—— 6%

I 5%

I 5%

. 3%

3%

0% 5% 10% 15% 20%

21%
21%

25%

Figure 8: “List the most positive aspect(s) of OURIDE:”

30

Adoption by University Standing

100%
80%
60%
40% -
60% 50%
20% 6
22%
0%

Freshman (N=28) Sophomore (N=40) Junior (N=38) Senior (N=23)

m Adopter m Non-Adopter

Adoption Factors

31

Summary

and Future

Partial adoption is good.
Instructors should introduce students
to web IDEs.

* About a third of students found it
"useful”.

e About half used it "very often" or
"often".
Implicit Learning Objectives

* "I want them to learn how to set
up a development environment.”

* “l want them to use git.”

What is “real” programming?

e Students perceive web IDEs as
not “real” tools.

e Computational thinking vs
System building.

Intelligent Coding

* Leverage IDE usage to provide relevant
information automatically.

32

This Talk

Lexical Distinguishability

(El?.@

(]le]e)

[a]lc]

0 (a[e][e] {o][c][a] ()
([]alfe)

1 (b [c][da])

&
o

2 ([&] -) (e][<][q] % (Ibl!)
RO e 2!

Language
Syntax

Kodethon

Kodethon
Q - c2fe x
1 Fincludecstdio.h>
My Files > 2
v 3
4- int mainQ) {
k- v 5 float fahrenheit, celsiut
6 int lower, upper, step;
7 Tower = -200;
B aou v 8 upper - 10;
9 step = 20;
10
et v
B e U printf(" QtRn");
12 printf(" --\n"
B catanct v 13
1 celsi
15 whil
B democ v 16
17
B demon v 18 Celsius = colstus + ¢
19
20
B forc v 2
22 printf("finished!\n")
b o 23
hw 2 return 0;
25 }

Development
Tools

CompAssist

Compiler
Error
Messages

33

Collaborators:

Chengnian Sun
(Google),

Nima Joharizadeh,

Haichuan Wang
(Huawei),

Zhendong Su.

To be submitted to
ICSE 20109.

CompAssist:
Synthesizing Minimal

Compilation Repair
Examples

Motivation

All programmers,

errors.

SIGCSE 2015

Google Study 2014 37% fail.

30% fail.

learners to senior, | e Compiler errors are difficult to
make compilation understand.

* 37M compilations, 17M failures

e C++ developers build 10 times/day and

* Java developers build 7 times/day and

Example

Code
1 int my_scanf(const char* format, ...) {}
2~ int main(Q) {
3 int x @;
4 my_scanf("%d" &x); // missing comma after double quote
5 1

Compiler Output

$ clang++3.9 -c -Wfatal-errors -stdlib=1libc++ -std=c++14
<stdin>:1:40: warning: control reaches end of non-void function [-Wreturn-typel
int my_scanf(const charx format, ...) {}

<stdin>:4:19: invalid operands to binary expression ('const char *' and 'int')
my_scanf("%d" &x); // missing comma after double quote

~,

Bahahatng "

1 warning and 1 error generated.

GCC Wiki Login diagnostid AV X ooy
sei: New_ C Parser
HomePage | RecentChanges FindPage | HelpContents | New_C_Parser

Immutable Page Info Attachments More Actions: s

Contributors:
« Joseph Myers
Delivery Date:
Now.
Description:

The C and Objective-C parser is replaced by a hand-written recursive descent parser. Eight versions have been posted to gcc-patches, with further explanation, discussion and timings. From
the fifth version onwards they have been feature-complete including ObjC support and bootstrapped with no regressions.

@ http://gcc.gnu.org/mi/gcc-patches/2004-10/msg01969.html @ http://gcc.gnu.org/mi/gec-patches/2004-10/msg02019.html @ http://gcc.gnu.org/ml/gcc-patches/2004-10/msg02409.himl €
http://gce.gnu.org/mi/gce-patches/2004-11/msg00240.html @ http://gcc.gnu.org/ml/gcc-patches/2004-11/msg00347.html @ http://gcc.gnu.org/mi/gcc-patches/2005-01/msg00302.htm! €
http://gcc.gnu.org/ml/gcc-patches/2005-02/msg00195.html @ http://gcc.gnu.org/ml/gcc-patches/2005-02/msg00339.html

Benefits:

Although timings showed a 1.5% speedup, the main benefits are facilitating of future enhancements including: OpenMP pragma support; lexing up front for C so reducing the number of
different code paths; diagnestic location improvements (and potentially other diagnostic improvements); merging cc1/cc1obj into a single executable with runtime conditionals (which has been
of interest to some Apple people in the past). Many defects and oddities in the existing parser which would not have been readily fixable there have been identified, recorded with ???
comments in the new parser and reproduced bug-compatibly and the new parser will facilitate their fixing.

Risks:

Code may be wrongly accepted which should be rejected, or wrongly rejected which should be accepted. These are mitigated by lack of any testsuite regressions, with tests having been added
to the testsuite for all diagnostics that came directly from the old parser. In addition, care has been taken to reproduce all identified oddities in the old grammar bug-compatibly rather than being
led into temptation to combine such changes unnecessarily with the replacement of the parser. (Tests for every token type in every context are no longer proposed; no other front end in GCC
has such tests.) Bootstrap with no regressions has been confirmed on x86, x86_64, ia64, ppc, ppc64 (Linux; last three platforms tested by Steven Bosscher) and ppc-darwin-7.7 (Marcin
Dalecki). Steven Bosscher might also be doing distribution build tests, although the present timing in terms of SUSE release plans isn't so good for this as when he originally volunteered to do
so; failing such tests before the parser goes into mainline, there will inevitably be such testing once it is in mainline. On the testing so far it is expected that any variation from the currently
accepted language, beyond slight differences in diagnostic location, is on obscure code and easy to fix. As for differences in diagnostic location, these have been avoided for cases covered in
the GCC testsuite, and any external code is expected to depend far less on the exact line of diagnostics. Error recovery might go into infinite loops; the code has been audited for cases of this
similar to those found in the past, and it is expected on the basis of that experience that any remaining cases will be easy to fix.

None: New_C_Parser (last edited 2008-01-10 19:38:45 by localhost

Can’t we just write * Previous example from recent version of clang.

better error messages? * In 2008, GCC replaced entire parser.

lowd. | Processing 0167 | HelpMeOut (CHI 2010)

File Edit Sketch Tools Help

* An “IDE” plugin that shows

Follow1 = .
i example fixes.
HelpMeOut
« . .
%% helpmeout - * Collect example fixes using
- crowdsourcing.
- [;03; Variable must provide either dimension expressions or an array initializer L. .
agles - 0.| suggestion 1 Limitations
seglength =
17 Before (Broken) After (Fixed)
(’){ 2int y[) = new int[); 2int y() = new int|width); .
(208, 200);| more info | vote up | vote down | find line | copy fix [] Prlva Cy
4 (20| Suggestion 2
(8, 109)
) [L — N * The Bootstrap Problem
more info | vote up | vote down | find line | copy fix 3

* Extensibility

* Bias/Completeness

Variable must provide either dimension expressions or an array initializer

* Inferring Patches

Figure 2. The HelpMeOut Suggestion Panel shows possible
corrections for a reported compiler error.

Compiler Error Message
Augmentation

Uncompilable Program Compilable Program

& 1|int my scanf(const char* format, ...) {} & 1|int my scanf(const char* format, ...) {}
2|/int main() { 2 int main() {
3 int x = 0; 3 int x = 0;

+ 4 my scanf("%d" &x); 4+ 4 my scanf("%d", &x);

$ clang++—3.9 —c -Wfatal-errors -stdlib=1libc++ -std=c++14
:1:49: warning: control reaches end of non-void function [-Wreturn-type]
int my_scanf(const charx format, ...) {}

$ clang++3.9 —c -Wfatal-errors —stdlib=1libc++ —std=c++14
<stdin>:1:40: warning: control reaches end of non-void function [-Wreturn-typel
int my_scanf(const charx format, ...) {}

<stdin>:4:19: invalid operands to binary expression ('const char *' and 'int') 1 warning generated.

my_scanf ("%d" &x);

1 warning and 1 error generated.

e _ For a specific compiler, (u, c) is a compilation repair
Compilation Repair example for error message e, if u is an uncompilable
Example program that triggers e, and c is a compilable program.
The difference between u and c is a repair patch (diff) A.

Challenges

Compilation
repair
examples can

help
programmers
resolve
errors.

How do you
obtain

compilation
repair
examples?

How do you

present
them?

40

Other Strategies

Collect uncompilable Data Mining: sk_p,
programs, and repair Prophet, DeepFix,
them. Genesis, TRACER.

Crowd-sourcing:

It is much easier to break programs than to
repair them.

If we do this over many different compilable
programs with random mutations, we can
get many repair examples and high coverage
of the compiler error space.

HelpMeOut, NoFAQ.

Key Insight

41

S e WM

constexpr int Apply(const int in, int (*f)(const int&)) { return
fCin); }

using Foo = 1int;

static constexpr int id(const Foo& 1) { return i; }

- static constexpr int resultsl = Apply(0, &id);

+ static constexpr int resultsl = Apply(0 &id); //Delete comma

//Error Message: 1invalid operands to binary expression ('int
"int (*)(const Foo &)' (aka int (*)(const int &) '))

and

We perform single-operation, single-token mutations.
* Tokenize source code

e Mutate

* Delete a random token.

* Select a random token. Insert it a random position.

Algorithm 2: Reduce a compilation error repair example.

Data: u is the source code of a uncompilable program.
Data: ¢ is the source code of a compilable program.
1 Function Reduce (uy, ¢g)

2 up < Format (ug) /* One token per line. */

3 ¢1 « Format(cp) /* One token per line. */ 1| //Error Message: invalid operands to binary expression ('int' and
4 (ug, c3) «— Align(uy, c1) /* See description. */ o int Apypilr;t(i(n?,(cﬁqnts(tc;osot ey (P Leons e)

5 Ao — Diff(uz, c2) /* Repair patch. */ it S eonst Fovty €3

s | AF < Diff(cz, up) /* Breaking mutation. x/ ¢+ int resultel = AppLY(o, 8id); // Tnsert comna

7 ¢3 < DeltaDebug(cs, AOR)

s | us« Patch(es, AY)

9 ug < PrettyPrint(us)

10 ¢4 < PrettyPrint(c3)

1 return (ug, c4) /* Reduced repair example. */

Post Condition: u4 triggers same error as uO.

Reduce

43

Algorithm 1: Generate compilation repair examples via the
Fuzz-AND-REDUCE approach.

Data: % is a corpus of compilable programs.
1 Function Generate(P)

2 E—@ /* Repair Examples */
3 foreach c € P do

4 u «— Fuzz(c) /* Fuzz seed program */
5 (exit_status, output) «— Compile (u)

6 if exit status == ERROR then

7 (u’,c’) « Reduce (u,c)

8 L E—EU{W,c")}

9 return E

Fuzz-and-Reduce

44

Search Engine

Given a user program that fails to

compile.

1. Extract error message.

2. Get related examples.

3. Group examples by patch.

4. Auto-experiment on user
program with patches.

5. Return ranked patches with

successful patches first.

Tokens

-

+

extract

Patches

-

~
Auto experiment L‘

Error
Message

infer,group

Fix
Examples

Related
Examples

45

Evaluation

RQ1: What proportion of
compiler errors are covered
by the repair examples?

RQ2: Do we generate a
diverse collection of repair
examples for each compiler
error?

RQ3: Are the generated
compiler repair examples
simple?

46

A mainstream C++ compiler

e clang++-3.9.

* GNU GCC test suite.
25,240 compilable programs for C and C++

Fuzz-and-Reduce

Experimental

Setup ¢ 10 days

¢ Exit on first fatal error

clang’s source code.

e 4, 092 distinct diagnostic messages, including
errors, warnings, notes, remarks, and other type
of messages.

¢ 1, 686 kinds of error that could potentially be
triggered by compiling C and C++ programs.

Component Repair Examples Covered Errors Total Errors Coverage

Lex 925 4 105 3.9%
Parse 27,505 140 216 64.8%
Sema 90,955 734 1374 53.4%
CodeGen 5 2 12 16.7%
All 116,019 867 1686 51.4%

RQ1: What proportion of compiler errors are covered
by the repair examples?

Error Message Coverage (Breadth)

48

350 364 25 24.5
o~ 300 20
F)
o 250 %
15
£ 200 £
Q150 148 S 10 11
E 100 4
50 22 5
0 1 4 0 1 I 2
(a) (b)

Generated at least 2 different repair examples for 89.6% of errors. Also, for 79.8%
of errors, it generated at least 2 distinct patches.

RQ2: Do we generate a diverse collection of repair
examples for each compiler error?

Error Message Coverage (Depth)

49

LOC Tokens

14

13 60 60
50

12

10
40

33

20

15

S N e O o0

(a) (b)

RQ3: Are the generated compiler repair examples
simple?

59.6% have 5 or fewer LOC, 60.8% have 25 or fewer tokens

50

User Study

* Do programmers find the generated
compilation repair examples helpful in
resolving compiler errors of real-world
C++ programs?

e 9 Tasks (real-world C++ uncompilable
programs).

* 14 participants

* Find and fix the code defect. Submit
solution.

* Rate helpfulness of repair examples.

51

Example Task

#include <iostream>
~ constexpr int foo(int i, int j) {
return 1 + j;

using TConstExprFunction = constexpr int (*)(int i, int j);

- int main() {
xpr TConstExprFunction f = foo;

10 xpr int i = f(1, 2);
11 std::cout << 1 std: :endl;
12 }

Compiler Output

$ clang++3.9 -c -Wfatal-errors -stdlib=1libc++ -std=c++14
<stdin>:6:28: type name does not allow constexpr specifier to be specified
using TConstExprFunction = constexpr int (*)(int i, int j);

1 error generated.

Possible Patches @

Delete constexpr

class ValueType {

public:

constexpr operator int() const { return m_ID; }
constexpr ValueType(int) : m_IDC) {}

int m_ID;

b

class ValueTypeEnum {

public:

static constexpr ValueType doubleval = 1;
B

template <int>

class ValueTypelnfo;

class FillFunctor {

- FillFunctor() { ValueTypelnfo<ValueTypeEnum constexpr ::doubleval>; }
+ FillFunctor() { ValueTypeInfo<ValueTypeEnum::doubleval>; }

H

9 more examples

Insert { Autoexperiment success?

-int Test6(){using TT = struct T constexpr operator int(){return 1;
-}
-

H
+int Test6() {

+ using TT = struct T {

+ constexpr operator int() { return 1; }
+ 1

1

1 mnre avamnia

User Study Results

Not Helpful Helpful

T1- | I ? |

T3- [] 0 o
I
I

T4-
T5-
T6- ; { |
T7- | . I |
T8- | I E —
TO- —] 1]
T10- | |

Not at all Somewhat Helbful Very Helpful
helpful Helpful

Rating

Task

Figure 7: After each task, participants rated the helpfulness
of repair examples. Participants rated examples as helpful
(“Somewhat helpful” or above) in 5 out of 9 tasks.

53

Participant

Feedback

54

Repair examples illustrated patches that resolved
the compiler error.

* P12: “the ones they got right they were
perfectly good”

Repair examples helped with unfamiliar C++
concepts.

* P1: “Suggested patches was helpful for
error messages to concepts that | am
unfamiliar with.”

* P8: “The suggested patches and examples
were a good refresher and helped save me
a lot of time.”

Repair examples suggested possible actions.

e P2: “some possible moves you can make
from the current state of the program.”

e P11: “repair examples told me exactly what
to do to fix the compiler error even though
| had no idea what was going on.”

Summary

and Future

Novel technique for synthesizing
compilation repair examples.

e Offline Generation + Online
Search

Generalizability: We can adapt this
technique for different compilers,
e.g., javac.
Coverage:
e Continuous fuzz-and-reduce.
* Additional seeds.
e Unreachable code?

Apply top-ranked patched
automatically to user program.

Integrate CompAssist into Kodethon,
amd IDEs like Visual Studio.

Adapt compiler error messages to
user proficiency.

55

Thank youl!

Lexical Distinguishability

step S C Choose S*

al[c]
(][] [a]
([]alfe)

&
=

0 (a][e][e]

(ol[c][e]
(]lalle)

(e]lella

CEEED

2 2] B
3 ([a])

i |

Minset

Language
Syntax

Kodethon

Kodethon
Q - c2fe x
1 Fincludecstdio.h>
My Files > 2
v 3
4~ int mainQ) {
| e v 5 float fahrenheit, celsius
6 int lower, upper, step;
7 Tower = -200;
B oaou v 8 upper = 10;
9 step = 20;
10
et v
B ot U printf(" CRn");
12 printf("-- =-\n")
B catanct v 13
1
15
B democ v 16
17
N 18
demon v
& 19
20
B forc v 2
22 printf("finished!\n")
b o 23
hw 2 return 0;

Development
Tools

CompAssist

Compiler Output

Compiler
Error
Messages

56

This Talk

Lexical Distinguishability

C

al[c]
(][] [a]
([]alfe)

0 (a][e][e]

(ol[c][e]

1 (a]fel[eh
5 (a1lel[e]

RO apnnn

])

&
o

Language
Syntax

Kodethon

Kodethon
Q - c2fe x
1 Fincludecstdio.h>
My Files > 2
v 3
4- int mainQ) {
k- v 5 float fahrenheit, celsiut
6 int lower, upper, step;
7 Tower = -200;
B oaou v 8 upper = 10;
9 step = 20;
10
et v
B e oY i cwnat;
12 prin --\n")
B catanct v 13
1 celsi
15 whil
B democ v 16
17
B demon v 18 Celsius = colstus + ¢
19
20
B forc v 21
22 printf("finished!\n")
b o 23
hw 2 return 0;
25 }

Development
Tools

CompAssist

Compiler Output

Compiler
Error
Messages

57

Collaborators:
Dong Qiu (Huawei),

You Zhou
(Facebook),

Earl Barr (UCL),

Zhendong Su (UC
Davis).

Gold Medal at ACM
Student Research
Competition @
OOPSLA 2014.

On the Lexica
Distinguishabi
Source Code

Motivation

* In a natural language

sentence, some words
are more important to
its meaning than
others.

* “My backpack is
very heavy.”

e “There is a lot of
smoke outside.”

From a few distinctive
words, we can often

guess the meaning of
the original sentence.

* | enjoy rainy days.

e They enjoy the
rainy season.

Sloppy Programming

* Little et al., ASE,
2007

* Write a few key
words, “list add”.

* Synthesize rest of
code.
SmartSynth

* Leetal., MobiSys,
2013.

* Keywords to
TouchDevelop
Scripts.

Code Search

* “What should | type
to find the code |
want?”

59

Source code consists of
wheat and chaff. It
contains a lot of chaff.

The Wheat Challenge: Can we
separate the wheat from
d ﬂd Chaff the chaff in programming

HypOtheSiS language sentences?

Vision: Programmer
writes wheat. Computer
fills in chaff.

Problem

Formulation

* |n source code:
 What is wheat?
 What is chaff?
 How do we separate them?

61

Bag-of-Words Model

e Unit of Code

e Functions are natural, likely distinct, pieces of code and functionality.

Bag-of-Words

¢ A function is a set/multiset of words.

e A word is a lexeme or some abstraction.

¢”hello” -> STRINGLITERAL
¢3.14 -> float

e Lexicon

e A lexicon is a set of words.
e Varying the lexicon allows us to explore programming language-specific information.

62

Example

/ *x
* Standard Bubble Sort algorithm.
* @param array The array to sort.
*/
private static void bubbleSort(int array[]) {
int length = array.length;
for (int i = 0; i < length; i++) {
for (int j = 1; j > length - i; j++) {
if (array[j-1] > array[j]) {

int temp = array[j-1];
array[j ?1] =a r?—;; [j } ; bubbleSort (int array[]) bubbleSort (String[] values)

array[j] = temp;
| for ||E| int ” String |

. [2or][a2 [1ne]
} } | array ”E”ﬂl length ” temp | | compareTo ||E|E| length ” temp “ values |

G GEE

static void bubblesort(String[] values) { |I||I||3E| II“IlElElE

// no Java sort, so ugly bubble sort
for (int i=0; i<=values.length-2; i++) { // stop sort [][][][][][] [][][][][][]
early to save time!
for (int j=values.length-2; j>=i; j--) { [] common words

// check that the jth value is smaller than j+1th,
// else swap
if (0 < values[j].compareTo(values[j+1])) {

// swap

String temp = values[j];

values[j] = values[j+1];

values[j+1] = temp;

63

Distinguishable Code

Given a set S, and a finite collection of finite sets Coll, S* is a

distinguishing subset of S, if and only if:

S* C S VC € Coll,S™ € C

A unit of code is lexically distinguishable if it has a distinguishing
subset

64

* Given a finite set S, and a finite collection of finite sets Coll, find a minimum
distinguishing subset (minset) S* of S.

* Plain English: We want to find the smallest distinguishing subset of a function.

* Example:
 LetS1={a,b,ce}, S2 ={a,c}, S3 ={b,c,d}, S4 = {a,d,e}.
« MINSET(S, {S2, S3, 54}) = {a,b}.
 MINSET(S2, {S1, S3,54}) =0
* MINSET(S3, {S1, S2, S4}) = {b,c}

65

Computational Complexity

e Theorem:
e MINSET is NP-hard.

e Proof Sketch:
e Reduce HITTING-SET to MINSET.

Step S C Choose S*

nnn|

Input: S, the set to minimize.
Input: C, the collection of sets against which § is minimized.

I: C.={C|CeCANecC} are those sets in C that contain
e.
2: §57=0
3: while S #OAC # 0 do
// Greedily pick an element that most differentiates S.
4: e:=CHOOSE({xe §||C,| <|C)|,Vy € S})
5. if C,=0VvC,=C break
6: S :=85"U{e}
7. S:=8\{e}
8: C:=C,
9: return S*,C

The Minset Algorithm

Research Questions

RQ1 RQ2 RQ3
e How many units e How much of e What is a
of code are code is needed natural, minimal
lexically to distinguish? lexicon?

distinguishable?

68

Empirical Setup

A popular programming language,

Java. Methods Count
Most popular projects in open-source Total (in corpus) 8,918,575
repositories Unique 8,135,663

P i Unique (50 or more tokens) 1,870,905
Large Corpus (100M LOC) Unique (50 to 562 tokens) 1,801,370

Large Universe of Methods (1.9M)

Repository Projects Files Lines of Code

Apache 103 101,480 10,891,228
Eclipse 102 287,669 32,770,246
Github 170 133,793 13,752,295
Sourceforge 533 373,556 42,434,029
Total 908 896,498 99,847,798

69

Name Description Size (words)

LEX All (raw) lexemes 5,611,561
LTT All lexer token types 101
MIN1 Fully qualified standard library method names 55,543

and basic operators 55,543
MIN2 MINI plus control keywords 55,556
MIN3 MIN2 plus fully qualified public type names 91,816
MIN4 MIN3 plus additional keyword and token types 91,829

Lexicons

Have_minset Have_duplicates
- oo _not_have_minset - oo _not_have_duplicates
=8 — S- —
- HE T
- -
))
T & °\
§‘ — ‘02 §' | 1(2
~ X o)) ~ —_ o
Al o X »
© o & =
- —
g 5 5 - 3
3o ~ © o o c
o S |) c S = R
=] = » o st =
r7) Q 5)) >
) e >
G c £ ©
‘5 b7 = T
(o)) ~ () -
o (] = o
S | = 1 S & Z
wn 1) c wn T
N a o) N o
zZ \ O
O l - oA —_ -
T T T T
LEX) LTT LEX) LTT
Lexicon Lexicon

RQ1: How many units of code are lexically
distinguishable?

Over LEX, 91% are distinguishable. LTT is too coarse.

Count

10000 Random Sample Methods (LEX)

o o
o _ 8_
a Min 12 3 Min 1
Mean 42.6 Mean 1.6
Median 35 Median 1
o Max 4004 o Max 6
8- Mode 28 S Mode 1
o™ - 3
(=] o
8- S-
- (4]
o- o I
I] I I I | | I 1 |
0 1000 2000 3000 4000 0 2 4 6 8
Method Size (Threshed) Minset Size

RQ2: How much of code is needed to distinguish?

Over LEX, 96% is chaff. Mean Minset size is 1.56 words.

10900

Y
x x
x H H g
wn
~
x x
-
E
X X
! =}
. o§
X X 2

0

Have_more_than_10_supersets
Have_10_or_fewer_supersets

. Have_minsets

|< Non-Distinguishable (58.56%) >|
| < Non-Distinguishable (55.21%) > |

|<— Non-Distinguishable (73.07%) —>|
| <— Non-Distinguishable (70.27%) —>|

:]
I il

MINT MIN2 MIN3 MING MINT MIN2 MIN3 MING

Lexicon

Lexicon

RQ3: What is a natural,

minimal lexicon?

* MIN4 is good in that

* methods are still
distinguishable (44.79%),
and

* minsets are still small
(3.06%).

e With multiplicity and no
abnormally large methods,
61.74% distinguishability.

Summary and Future Work

A MINSET is our

- rimen r Experiment over
proposal of a Investigate to S @ periment ove

other web documents
programming retrieved by
languages. Google.

formal definition natural language
of key ideas corpora.
(“wheat”).

74

